Assessment of Dilution Options on a Hydrogen Internal Combustion Engine

Author:

Rouleau Loic1,Nowak Ludovic1,Duffour Florence1,Walter Bruno1

Affiliation:

1. IFP Energies Nouvelles

Abstract

<div class="section abstract"><div class="htmlview paragraph">The hydrogen internal combustion engine is a promising alternative to fossil fuel-based engines, which, in a short time, can reduce the carbon footprint of the ground transport sector. However, the high heat release rates associated with hydrogen combustion results in higher NOx emissions. The NOx production can be mitigated by diluting the in-cylinder mixture with air, Exhaust Gas Recirculation (EGR) or water injected in the intake manifold. This study aims at assessing these dilution options on the emissions, efficiency, combustion performance and boosting effort. These dilution modes are, at first, compared on a single cylinder engine (SCE) with direct injection of hydrogen in steady state conditions. Air and EGR dilutions are then evaluated on a corresponding 4-cylinder engine by 0D simulation on a complete map under NOx emission constraint.</div><div class="htmlview paragraph">On the SCE at 3000rpm and 10.7bar IMEP, air and EGR dilutions allow a high dilution rate, leading to a significant NOx reduction: from 2.8g/kWh to less than 0.05g/kWh. The indicated efficiency goes through a maximum of about 45.5% with NOx emissions around 0.4g/kWh without affecting the lubricant consumption, calculated from carbon-bearing gas emissions. The water injection doesn’t affect the efficiency but reduces NOx emissions moderately without inducing excessive lubricant consumption. For the three dilution options, a common guide curve of NOx emissions versus a thermal dilution rate, based on the fuel chemical energy, diluent heat capacity and water vaporization latent heat, is presented. The best indicated efficiency for a tolerable NOx level of 0.4g/kWh is achieved for lambda of 2.4 with air dilution path and EGR rate of 10% at lambda of 2. After these dilution tests involving hydrogen and possibly high content of water in the chamber, only a thin layer of corrosion is observed on the iron cast liner without any structural or mechanical damage. The 0D simulation shows the interesting combination of air and EGR dilution allowing higher load under NOx emission constraint. EGR gases containing water with high heat capacity allows to reduce the quantity of diluent at high load, therefore the filling work and turbocharger effort.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3