Thermal Performance of a 48V Prismatic Lithium-Ion Battery Pack Under WLTC Driving Cycles with a Liquid Cooling System

Author:

Carlucci Antonio Paolo1,Darvish Hossein1,Laforgia Domenico1

Affiliation:

1. University of Salento

Abstract

<div class="section abstract"><div class="htmlview paragraph">This experimental study investigates the thermal behavior of a 48V lithium-ion battery (LIB) pack comprising three identical modules, each containing 12 prismatic LIB cells. The objective is to investigate the thermal performance of the LIB pack under real-world operating conditions using a worldwide harmonized light duty test cycle and its inverted version. Two cases are tested whose difference is the initial state of charge (SOC), 90% for Case1 and 60% for Case2. The temperature distribution within the battery pack and cooling system is measured using 27 thermocouples. The results show that external surfaces exhibit the lowest temperatures, while the middle cells experience the highest. In addition, an abnormal temperature spike in a specific cell shows external influences or internal irregularities of the LIB cell, emphasizing the need to utilize a high number of thermocouples. Comparing Case1 and Case2, Case2 demonstrates a higher temperature rise at the cycle's beginning. The temperature gradient, the difference between maximum and minimum temperatures at each time, remains below 3.7°C for both cases. A homogeneous indirect liquid cooling system is implemented when the pack reaches 40.0°C, operating during the most thermally demanding period. However, Case2's enhanced cooling consumes more energy than Case1. Furthermore, initial SOC influences stored energy rise of the battery pack. Case2 experiences higher increases and smaller reductions compared to Case1, emphasizing the importance of initial SOC for energy balance and pack stability. This study underlines the importance of evaluating battery pack thermal behavior under real-world operating conditions, emphasizing the complexity of the LIB battery pack system, as well as the impact of a liquid cooling system on its thermal performance.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3