Initial Development of a Physics-Aware Machine Learning Framework for Soot Mass Prediction in Gasoline Direct Injection Engines

Author:

Jayaprakash Bharat1,Wilmer Brady1,Northrop William F.2

Affiliation:

1. University of Minnesota-Twin Cities

2. Univ. of Minnesota-Twin Cities

Abstract

<div class="section abstract"><div class="htmlview paragraph">Calibration of automotive engines to ensure compliance with emission regulations is a critical phase in product development. Control of engine-out particulate emissions, which directly impact the environment and public health, is particularly important. Detailed physics-based models are typically used to gain a rich understanding of the complex physical phenomena that drive the soot particle formation in an engine cylinder. However, such models often fail to correctly represent the highly dynamic nature of the underlying mechanisms under transient combustion conditions. Moreover, most physics-based models were initially developed for diesel engine applications and their applicability to gasoline engines remains questionable due to differences in flame structure and fuel-wall interactions. Black-box models have been previously proposed to predict engine-out soot emissions, but their lack of physical interpretability is an unsolved drawback. To address these limitations, we present a physics-aware twin-model machine learning framework to predict and analyze engine-out soot mass from a gasoline direct injection (GDI) engine. The framework combines a physics-based model with a bagging-type ensemble learning model that both maintains high accuracy and allows physical interpretation of results without using computationally intensive high-fidelity models. This work shows why a one-model-fits-all approach fails in the case of predicting soot emissions due to clustered co-occurrences of operating conditions that cause non-compliant behavior. We compare the performance of the proposed framework with that of the standalone baseline model and a feed-forward deep neural network. Using WLTP data from a 2.0L naturally aspirated GDI engine, the proposed framework predicts engine-out soot mass with an improvement of 29% in the R<sup>2</sup> value and 21% in the root mean squared error from the baseline physics-based model, without compromising physical interpretability. These improvements are significant enough to warrant further framework development with additional engine datasets.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3