A Joint Work to Develop a Predictive 1D Modelling Approach for Heavy Duty Gaseous Fueled Engines through Experiments and 3D CFD Simulations

Author:

Fraioli Valentina1,Di Maio Dario1,Napolitano Pierpaolo1,Lanni Davide2,D'Antuono Gabriele2,Galloni Enzo2,Callu Cyrille3,Maestro Dario3

Affiliation:

1. CNR - STEMS

2. DICEM - University of Cassino

3. TotalEnergies OneTech

Abstract

<div class="section abstract"><div class="htmlview paragraph">The present paper reports experimental and numerical research activities devoted to deeply characterize the behavior and performance of a Heavy Duty (HD) internal combustion engine fed by compressed natural gas (CNG). Current research interest in HD engines fed by gaseous fuels with low C/H ratios is related to the well-known potential of such fuels in reducing carbon dioxide emissions, combined to extremely low particulate matter emissions too. Moreover, methane, the main CNG component, can be produced through alternative processes relying on renewable sources, or in the next future replaced by methane/H2 blends.</div><div class="htmlview paragraph">The final goal of the presented investigations is the development of a predictive 0D combustion submodel within the framework of a 1D numerical simulation platform. To this aim, an experimental campaign has been carried out on a six-cylinder HD spark ignition engine CNG engine, Euro VI d compliant, typically employed in road vehicle applications, at the test bench, in order to build a comprehensive and extended database. The experimental characterization was necessary not only to have a defined picture of the engine behavior, but also to provide the required initial and boundary conditions and a consistent dataset for 1D and 3D models validation.</div><div class="htmlview paragraph">Then, full-cycle 3D CFD numerical simulations have been carried out, reproducing all the engine phases of a selected cylinder: it has thus been possible to further enrich the set of information regarding main fluid-dynamic features of the investigated geometry and corresponding combustion evolution. At the same time, a 1D model of the full engine layout has been built. At first, it was preliminary calibrated and validated through a non-predictive combustion submodel (Three Pressure Analysis approach). Finally, relying on experimental and predicted data, including global swirl ratio temporal evolution, turbulent intensity and length scale, it has been possible to set up a predictive modelling approach, capable of suitably reproducing pressure profiles and flow rates in various engine operating conditions.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3