An Energy Management Strategy for Aeronautical Hybrid Propulsion Systems Based on an MPC Supervisor

Author:

Fornaro Enrico1,Tordela Ciro1

Affiliation:

1. Universita Degli Studi di Napoli

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the last decades, the requirement related to the reduction of energy waste has been focused on the aeronautical field for decreasing CO<sub>2</sub> emissions in propulsion systems, coupled with the possibility of improving their ecological sustainability. Performance of hybrid electric aircraft are affected by the sizes and weights of propulsion systems typically constituted of internal combustion engines and electric motors. Therefore, the correct design of propulsive architectures is fundamental to ensure a desired state of charge target level of batteries compliant with the flight plan provided by a driver unit. A Linear Time Variant Model Predictive Control (LTV-MPC) strategy for energy management purposes of an aeronautical hybrid powertrain is proposed in the present work. The MPC, designed as a supervisor, provides the best trade-off between command torques of motors belonging to a parallel-hybrid propulsion system to guarantee the final state of charge as close as possible to the initial one. Furthermore, the MPC ensures the following of the target flight plan, typically called mission, imposed by the driver. A lumped parameters dynamical model of an 8-seat aircraft is presented for testing the capability of the proposed LTV-MPC to manage a hybrid powertrain composed of an internal combustion engine and an electric motor described by maps. The proposed LTV-MPC supervisor is suitable to be employed in the aeronautical field to handle, in real-time, hybrid propulsion systems thanks to its reduced computational effort coupled with its capability to reduce CO2 emissions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3