Evaluation of PM Emissions from Internal Combustion Engines, Electric and Plug-In Hybrid Vehicles by Using Emission Factors

Author:

Castiglione Teresa1,Perrone Diego1,Polistina Massimo2

Affiliation:

1. University of Calabria

2. University Hospital "R. Dulbecco" CZ

Abstract

<div class="section abstract"><div class="htmlview paragraph">To pursue the target of the “net-zero” emission by 2050 and to reduce the most harmful pollutant emissions from road traffic, more specifically of particulate matter (PM), the transportation sector is subject to significant changes. A transition from internal combustion engine passenger cars (ICEVs) to hybrid vehicles (HEVs) and battery-electric vehicles (BEVs) is taking place. This transition, however, must be carefully examined from different perspectives, as hybridization/electrification may not reduce the levels of PM and CO<sub>2</sub> as much as expected. In this work, exhaust and non-exhaust PM emissions of a vehicle powered with an internal combustion engine, and of the same vehicle in plug-in hybrid and electric configurations is carried out, by using the emission factors approach. The main objective is the evaluation of the impact of vehicle weight, of percentage of regenerative braking and of energy management strategy (for hybrid configuration), on tire, wear and road surface wear, which are the most important non-exhaust PM sources. In particular, as most of the studies focus on a comparison between ICEs and BEVs, the current analysis aims at evaluating if the plug-in hybrid configuration, which is half-way between ICE and BEV, can overcome the limitations of electrification and of ICEs in terms of PM emissions. Results for gasoline engine show that a weight increase of 31% and 40% for the hybrid and electric configurations, respectively, with respect to the ICE version, contributes to increase the total PM<sub>10</sub> of about 16% and PM<sub>2.5</sub> of 9% for PHEV. For BEV, these values amount to 20% for PM<sub>10</sub> and to 4% for PM<sub>2.5</sub>. Adoption of regenerative braking significantly contributes to counteract the effects of a higher weight, so that overall, for PHEV and BEV, total PM emissions are reduced with respect to the ICE versions. In particular, total PM emissions (both PM<sub>10</sub> and PM<sub>2.5</sub>) are reduced of about 3% for PHEV and of 13% for BEV. For the diesel engine, where the weight difference between the ICE and PHEV and BEV versions are more limited (+8% for PHEV and +36% for BEV), higher beneficial effects related to regenerative braking are achieved, so that total PM emissions are reduced of 13% for PHEV and of 14% for BEV, with respect to ICE.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3