Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement

Author:

Ratnak Sok,Kusaka Jin,Daisho Yasuhiro,Yoshimura Kei,Nakama Kenjiro

Abstract

<div class="section abstract"><div class="htmlview paragraph">Primary work is to investigate premixed laminar flame propagation in a constant volume chamber of iso-octane/air combustion. Experimental and numerical results are investigated by comparing flame front displacements under lean to rich conditions. As the laminar flame depends on equivalence ratio, temperature, and pressure conditions, it is a main property for chemical reaction mechanism validation. Firstly, one-dimensional laminar flame burning velocities are predicted in order to validate a reduced chemical reaction mechanism. A set of laminar burning velocities with pressure, temperature, and mixture equivalence ratio dependences are combined into a 3D-CFD calculation to compare the predicted flame front displacements with that of experiments. It is found that the reaction mechanism is well validated under the coupled 1D-3D combustion calculations. Next, lean experiments are operated in a SI engine by boosting intake pressure to maintain high efficiency without output power penalty. The peak indicated thermal efficiency are finally achieved under λ=1.3 with intake manifold absolute pressure 150 kPa in experiment. Data of in-cylinder pressure and rate of heat release from the 3D-CFD simulations combined with the validated chemical reaction mechanism are reproduced. NOx emissions from experiment and simulation are also in good agreements under the lean-boost combustion. Further thermal efficiency improvements of the lean-boost SI engine are investigated numerically by using dilution rate, high induced in-cylinder flow, and high knock resistant fuel. The peak indicated thermal efficiency and load of the SI engine is achieved. In addition, methods to prevent knock for high efficiency spark ignition engine are also discussed.</div></div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3