Spectroscopic Investigation of Initial Combustion Stages in a SI Engine Fuelled with Ethanol and Gasoline

Author:

Di Iorio S.1,Irimescu A.1,Merola S.S.1,Sementa P.1,Vaglieco B. M.1

Affiliation:

1. Istituto Motori - CNR

Abstract

<div class="section abstract"><div class="htmlview paragraph">It is well known that ethanol can be used in spark-ignition (SI) engines as a pure fuel or blended with gasoline. High enthalpy of vaporization of alcohols can affect air-fuel mixture formation prior to ignition and may form thicker liquid films around the intake valves, on the cylinder wall and piston crown. These liquid films can result in mixture non-homogeneities inside the combustion chamber and hence strongly influence the cyclic variability of early combustion stages. Starting from these considerations, the paper reports an experimental study of the initial phases of the combustion process in a single cylinder SI engine fueled with commercial gasoline and anhydrous ethanol, as well as their blend (50%<sub>vol</sub> alcohol). The engine was optically accessible and equipped with the cylinder head of a commercial power unit for two-wheel applications, with the same geometrical specifications (bore, stroke, compression ratio). Ultra-violet (UV) natural emission spectroscopy measurements ranging from 250nm to 470nm wavelength and simultaneous thermodynamic analysis were used to better understand the effect of ethanol content on flame kernel inception and development. All experiments were conducted at wide open throttle (WOT), with stoichiometric air-fuel mixtures, fixing the engine speed at 2000rpm. Optical investigations allowed to follow the evolution of chemical species that marked the spark discharge (cyano CN and hydroxyl OH radicals) as well as flame front initial growth (OH and carbyne CH radicals). Vibrational and rotational temperatures were calculated during the arc and glow phase by the ratio between the emission intensity of CN and OH radicals. Results were compared with adiabatic flame temperature traces obtained by applying a two zone model.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3