Durability Prediction of Motorcycle Body Components Using Advanced Fatigue Analysis

Author:

Sakamoto Kazunobu1

Affiliation:

1. YAMAHA MOTOR Co. Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">The purpose of this study is to improve the accuracy of durability predictions for motorcycle body components through the implementation of a fatigue analysis that uses the finite element method (FEM) to identify the fatigue failure characteristics of arc welds, die-cast aluminum alloys, and thermo-plastics. In addition to highly accurate load conditions and stress analysis, a fatigue analysis that also takes into consideration the fatigue failure mechanism is essential to making accurate durability predictions. Fatigue tests were carried out under several load conditions using specimens of several different shapes that simplified the actual structures. The fatigue life of the weld toe is assumed to be the difference of the crack propagation rate due to the loading mode. The durability of die-cast aluminum alloys was found to be sensitive to the microscopic structure due to the casting process. The factors that influenced the fatigue behavior of the plastics were the stress gradient and the viscoelastic behavior. These comprehensive fatigue characteristics were applied to the fatigue analysis codes fe-safe and FEMFAT. The master S-N curve approach was used to evaluate the fatigue of the weld zone. Then the correlation between the durability predictions and the actual life were analyzed under rough road running conditions. This procedure was found to be an effective means of accurately predicting the fatigue life of motorcycle body components.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3