Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices

Author:

Crouch Rebecca,Smith Jared,Stromer Bobbi,Hubley Christian,Beal Samuel,Lotufo Guilherme,Butler Afrachanna,Wynter Michelle,Russell Amber,Coleman Jessica,Wayne Katrinka,Clausen Jay,Bednar Anthony

Abstract

Currently, no standard method exists for analyzing insensitive munition (IM) compounds in environmental matrices, with or without concurrent legacy munition compounds, resulting in potentially inaccurate determinations. The primary objective of this work was to develop new methods of extraction, pre-concentration, and analytical separation/quantitation of 17 legacy munition compounds along with several additional IM compounds, IM breakdown products, and other munition compounds that are not currently included in U.S. Environmental Protection Agency (EPA) Method 8330B. Analytical methods were developed to enable sensitive, simultaneous detection and quantitation of the 24 IM and legacy compounds, including two orthogonal high-performance liquid chromatography (HPLC) column separations with either ultraviolet (UV) or mass spectrometric (MS) detection. Procedures were developed for simultaneous extraction of all 24 analytes and two surrogates (1,2-dinitrobenzene, 1,2-DNB; o-NBA) from high- and low-level aqueous matrices and solid matrices, using acidification, solid phase extraction (SPE), or solvent extraction (SE), respectively. The majority of compounds were recovered from four tissue types within current limits for solids, with generally low recovery only for Tetryl (from 4 to 62%). A preparatory chromatographic interference removal procedure was adapted for tissue extracts, as various analytical interferences were observed for all studied tissue types.

Publisher

Engineer Research and Development Center (U.S.)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3