Author:
Clausen Jay,Truong Vuong,Bragdon Sophia,Frankenstein Susan.,Wagner Anna,Affleck Rosa,Williams Christopher
Abstract
The ability to detect buried objects is critical for the Army. Therefore, this report summarizes the fourth year of an ongoing study to assess environ-mental phenomenological conditions affecting probability of detection and false alarm rates for buried-object detection using thermal infrared sensors. This study used several different approaches to identify the predominant environmental variables affecting object detection: (1) multilevel statistical modeling, (2) direct image analysis, (3) physics-based thermal modeling, and (4) application of machine learning (ML) techniques. In addition, this study developed an approach using a Canny edge methodology to identify regions of interest potentially harboring a target object. Finally, an ML method was developed to improve automatic target detection and recognition performance by accounting for environmental phenomenological conditions, improving performance by 50% over standard automatic target detection and recognition software.
Publisher
Engineer Research and Development Center (U.S.)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献