Buried-object-detection improvements incorporating environmental phenomenology into signature physics

Author:

Clausen Jay,Truong Vuong,Bragdon Sophia,Frankenstein Susan.,Wagner Anna,Affleck Rosa,Williams Christopher

Abstract

The ability to detect buried objects is critical for the Army. Therefore, this report summarizes the fourth year of an ongoing study to assess environ-mental phenomenological conditions affecting probability of detection and false alarm rates for buried-object detection using thermal infrared sensors. This study used several different approaches to identify the predominant environmental variables affecting object detection: (1) multilevel statistical modeling, (2) direct image analysis, (3) physics-based thermal modeling, and (4) application of machine learning (ML) techniques. In addition, this study developed an approach using a Canny edge methodology to identify regions of interest potentially harboring a target object. Finally, an ML method was developed to improve automatic target detection and recognition performance by accounting for environmental phenomenological conditions, improving performance by 50% over standard automatic target detection and recognition software.

Publisher

Engineer Research and Development Center (U.S.)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvements in Target Detection Using Machine Learning;2024 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2024-08-14

2. Investigations into out-of-domain performance of a two-step ATR based on a fusion of thermal and environmental data;Automatic Target Recognition XXXIV;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3