Barely Supercritical Percolation on Poissonian Scale-free Networks

Author:

Dhara S.,Hofstad R.v.d.

Abstract

We study the giant component problem slightly above the critical regime for percolation on Poissonian random graphs in the scale-free regime, where the vertex weights and degrees have a diverging second moment. Critical percolation on scale-free random graphs has been observed to have incredibly subtle features that are markedly different compared to those in random graphs with a converging second moment. In particular, the critical window for percolation depends sensitively on whether we consider single- or multi-edge versions of the Poissonian random graph. In this paper, and together with our companion paper [3], we build a bridge between these two cases. Our results characterize the part of the barely supercritical regime where the size of the giant components are approximately same for the single- and multi-edge settings. The methods for establishing concentration of giant for the single- and multi-edge versions are quite different. While the analysis in the multi-edge case is based on scaling limits of exploration processes, the single-edge setting requires identi fication of a core structure inside certain high-degree vertices that forms the giant component.

Publisher

Individual entrepreneur Bayakhunova Leyla Bakirovna

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3