Left Motor δ Oscillations Reflect Asynchrony Detection in Multisensory Speech Perception

Author:

Biau EmmanuelORCID,Schultz Benjamin G.,Gunter Thomas C.,Kotz Sonja A.

Abstract

During multisensory speech perception, slow δ oscillations (∼1–3 Hz) in the listener's brain synchronize with the speech signal, likely engaging in speech signal decomposition. Notable fluctuations in the speech amplitude envelope, resounding speaker prosody, temporally align with articulatory and body gestures and both provide complementary sensations that temporally structure speech. Further, δ oscillations in the left motor cortex seem to align with speech and musical beats, suggesting their possible role in the temporal structuring of (quasi)-rhythmic stimulation. We extended the role of δ oscillations to audiovisual asynchrony detection as a test case of the temporal analysis of multisensory prosody fluctuations in speech. We recorded Electroencephalograph (EEG) responses in an audiovisual asynchrony detection task while participants watched videos of a speaker. We filtered the speech signal to remove verbal content and examined how visual and auditory prosodic features temporally (mis-)align. Results confirm (1) that participants accurately detected audiovisual asynchrony, and (2) increased δ power in the left motor cortex in response to audiovisual asynchrony. The difference of δ power between asynchronous and synchronous conditions predicted behavioral performance, and (3) decreased δ-β coupling in the left motor cortex when listeners could not accurately map visual and auditory prosodies. Finally, both behavioral and neurophysiological evidence was altered when a speaker's face was degraded by a visual mask. Together, these findings suggest that motor δ oscillations support asynchrony detection of multisensory prosodic fluctuation in speech.SIGNIFICANCE STATEMENTSpeech perception is facilitated by regular prosodic fluctuations that temporally structure the auditory signal. Auditory speech processing involves the left motor cortex and associated δ oscillations. However, visual prosody (i.e., a speaker's body movements) complements auditory prosody, and it is unclear how the brain temporally analyses different prosodic features in multisensory speech perception. We combined an audiovisual asynchrony detection task with electroencephalographic (EEG) recordings to investigate how δ oscillations support the temporal analysis of multisensory speech. Results confirmed that asynchrony detection of visual and auditory prosodies leads to increased δ power in left motor cortex and correlates with performance. We conclude that δ oscillations are invoked in an effort to resolve denoted temporal asynchrony in multisensory speech perception.

Funder

EC | Horizon 2020

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3