Differential Activity-Dependent Increase in Synaptic Inhibition and Parvalbumin Interneuron Recruitment in Dentate Granule Cells and Semilunar Granule Cells

Author:

Afrasiabi Milad,Gupta Akshay,Xu Huaying,Swietek Bogumila,Santhakumar VijayalakshmiORCID

Abstract

Strong inhibitory synaptic gating of dentate gyrus granule cells (GCs), attributed largely to fast-spiking parvalbumin interneurons (PV-INs), is essential to maintain sparse network activity needed for dentate dependent behaviors. However, the contribution of PV-INs to basal and input-driven sustained synaptic inhibition in GCs and semilunar granule cells (SGCs), a sparse morphologically distinct dentate projection neuron subtype, is currently unknown. In studies conducted in hippocampal slices from mice, we find that although basal IPSCs are more frequent in SGCs and optical activation of PV-INs reliably elicited IPSCs in both GCs and SGCs, optical suppression of PV-INs failed to reduce IPSC frequency in either cell type. Amplitude and kinetics of IPSCs evoked by perforant path (PP) activation were not different between GCs and SGCs. However, the robust increase in sustained polysynaptic IPSCs elicited by paired afferent stimulation was lower in SGCs than in simultaneously recorded GCs. Optical suppression of PV-IN selectively reduced sustained IPSCs in SGCs but not in GCs. These results demonstrate that PV-INs, while contributing minimally to basal synaptic inhibition in both GCs and SGCs in slices, mediate sustained feedback inhibition selectively in SGCs. The temporally selective blunting of activity-driven sustained inhibitory gating of SGCs could support their preferential and persistent recruitment during behavioral tasks.SIGNIFICANCE STATEMENTOur study identifies that feedback inhibitory regulation of dentate semilunar granule cells (SGCs), a sparse and functionally distinct class of projection neurons, differs from that of the classical projection neurons, GCs. Notably, we demonstrate relatively lower activity-dependent increase in sustained feedback inhibitory synaptic inputs to SGCs when compared with GCs which would facilitate their persistent activity and preferential recruitment as part of memory ensembles. Since dentate GC activity levels during memory processing are heavily shaped by basal and feedback inhibition, the fundamental differences in basal and evoked sustained inhibition between SGCs and GCs characterized here provide a framework to reorganize current understanding of the dentate circuit processing.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

New Jersey Commission on Brain Injury Research

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3