Neuroscience Needs to Test Both Statistical and Scientific Hypotheses

Author:

Alger Bradley E.ORCID

Abstract

Experimental neuroscience typically uses “p-valued” statistical testing procedures (null hypothesis significance testing; NHST) in evaluating its results. The rote, often misguided, application of NHST (Gigerenzer, 2008) has led to errors and “questionable research practices.” Although the problems could be avoided with better statistics training (Lakens, 2021), there have been calls to abandon NHST altogether. One suggestion is to replace NHST with “estimation statistics” (Cumming and Calin-Jageman, 2017; Calin-Jageman and Cumming, 2019). Estimation statistics emphasizes the uncertainty inherent in scientific investigations and uses metrics, e.g., confidence intervals (CIs), that draw attention to uncertainty. Besides procedural steps and methods, the Estimation Approach prefers expressing “quantitative,” rather than “qualitative” conclusions and making generalizations, rather than testing scientific hypotheses. The Estimation Approach embodies a philosophy of science—its ultimate goals, experimental mindset, and specific aims—that diverges unhelpfully from what laboratory-based neuroscience needs. The Estimation Approach meshes naturally with, e.g., clinical neuroscience, drug development, human psychology, and social sciences. It fits less well with much of the neuroscience published in theJournal of Neuroscience, for example. In contrast, the philosophy behind NHST fits naturally with traditional, evaluative testing of scientific hypotheses. Finally, some Estimation Approach remedies, e.g., replication, ideally with “preregistration,” are incompatible with much experimental neuroscience. This Dual Perspective essay argues that, while neuroscience can benefit from practical aspects of estimation statistics, entirely replacing conventional methods with the Estimation Approach would be a mistake. NHST testing should be retained and improved.SIGNIFICANCE STATEMENTExperimental neuroscience relies on statistical procedures to assess the meaning and importance of its research findings. Optimal scientific communication demands a common set of assumptions for expressing and evaluating results. Problems arising from misuse of conventional significance testing methods have led to a proposal to replace significance testing with an Estimation Statistics Approach. Practical elements of the Estimation Approach can usefully be incorporated into conventional methods. However, the prevailing philosophy of the Estimation Approach does not address certain important needs of much experimental neuroscience. Neuroscience should adopt beneficial elements of the Estimation Approach without giving up the advantages of significance testing.

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3