The Precision of Place Fields Governs Their Fate across Epochs of Experience

Author:

Chiu YuHung,Dong Can,Krishnan Seetha,Sheffield Mark E. J.ORCID

Abstract

AbstractSpatial memories are represented by hippocampal place cells during navigation. This spatial code is dynamic, undergoing changes across time, known as representational drift, and across changes in internal state, even while navigating the same spatial environment with consistent behavior. A dynamic code may provide the hippocampus a means to track distinct epochs of experience that occur at different times or during different internal states and update spatial memories. Changes to the spatial code include place fields (PFs) that remap to new locations and place fields that vanish, while others are stable. However, what determines place field fate across epochs remains unclear. We measured the lap-by-lap properties of place cells in mice during navigation for a block of trials in a rewarded virtual environment. We then determined the position of the place fields in another block of trials in the same spatial environment either separated by a day (a distinct temporal epoch) or during the same session but with reward removed to change reward expectation (a distinct internal state epoch). We found that place cells with remapped place fields across epochs tended to have lower spatial precision during navigation in the initial epoch. Place cells with stable or vanished place fields tended to have higher spatial precision. We conclude that place cells with less precise place fields have greater spatial flexibility, allowing them to respond to, and track, distinct epochs of experience in the same spatial environment, while place cells with precise place fields generally preserve spatial information when their fields reappear.

Funder

Whitehall Foundation

Searle Scholars Program

Alfred P. Sloan Foundation

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | National Institute on Drug Abuse

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3