14-3-3θ Does Not Protect against Behavioral or Pathological Deficits in Alzheimer’s Disease Mouse Models

Author:

Gannon MaryORCID,Wang Bing,Stringfellow Sara Anne,Quintin Stephan,Mendoza Itzel,Srikantha Thanushri,Roberts A. Claire,Saito Takashi,Saido Takaomi C.,Roberson Erik D.ORCID,Yacoubian Talene A.

Abstract

AbstractAlzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with synaptic dysfunction and dendritic spine loss and the pathologic hallmarks of β-amyloid (Aβ) plaques and hyperphosphorylated tau tangles. 14-3-3 proteins are a highly conserved family of proteins whose functions include regulation of protein folding, neuronal architecture, and synaptic function. Additionally, 14-3-3s interact with both Aβ and tau, and reduced levels of 14-3-3s have been shown in the brains of AD patients and in AD mouse models. Here, we examine the neuroprotective potential of the 14-3-3θ isoform in AD models. We demonstrate that 14-3-3θ overexpression is protective and 14-3-3θ inhibition is detrimental against oligomeric Aβ-induced neuronal death in primary cortical cultures. Overexpression of 14-3-3θ using an adeno-associated viral (AAV) vector failed to improve performance on behavioral tests, improve Aβ pathology, or affect synaptic density in the J20 AD mouse model. Similarly, crossing a second AD mouse model, theAppNL-G-Fknock-in (APP KI) mouse, with 14-3-3θ transgenic mice failed to rescue behavioral deficits, reduce Aβ pathology, or impact synaptic density in the APP KI mouse model. 14-3-3θ is likely partially insolubilized in the APP models, as demonstrated by proteinase K digestion. These findings do not support increasing 14-3-3θ expression as a therapeutic approach for AD.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Alzheimer’s of Central Alabama

University of Alabama at Birmingham School of Medicine

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3