Recording Neural Reward Signals in a Naturalistic Operant Task Using Mobile-EEG and Augmented Reality

Author:

Stringfellow Jaleesa S.ORCID,Liran Omer,Lin Mei-Heng,Baker Travis E.

Abstract

The electrophysiological response to rewards recorded during laboratory tasks has been well documented, yet little is known about the neural response patterns in a more naturalistic setting. Here, we combined a mobile-EEG system with an augmented reality headset to record event-related brain potentials (ERPs) while participants engaged in a naturalistic operant task to find rewards. Twenty-five participants were asked to navigate toward a west or east goal location marked by floating orbs, and once participants reached the goal location, the orb would then signify a reward (5 cents) or no-reward (0 cents) outcome. Following the outcome, participants returned to a start location marked by floating purple rings, and once standing in the middle, a 3 s counter signaled the next trial, for a total of 200 trials. Consistent with previous research, reward feedback evoked the reward positivity, an ERP component believed to index the sensitivity of the anterior cingulate cortex to reward prediction error signals. The reward positivity peaked ∼230 ms with a maximal at channel FCz (M = −0.695 μV, ±0.23) and was significantly different than zero (p < 0.01). Participants took ∼3.38 s to reach the goal location and exhibited a general lose-shift (68.3% ±3.5) response strategy and posterror slowing. Overall, these novel findings provide support for the idea that combining mobile-EEG with augmented reality technology is a feasible solution to enhance the ecological validity of human electrophysiological studies of goal-directed behavior and a step toward a new era of human cognitive neuroscience research that blurs the line between laboratory and reality.

Funder

Rutgers University Research Council

National Institutes of Health NIGMS

Research Corporation for Science Advancement and Frederick Gardner Cottrell Foundation

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3