Bayesian and Discriminative Models for Active Visual Perception across Saccades

Author:

Subramanian Divya,Pearson John M.ORCID,Sommer Marc A.ORCID

Abstract

AbstractThe brain interprets sensory inputs to guide behavior, but behavior itself disrupts sensory inputs. Perceiving a coherent world while acting in it constitutes active perception. For example, saccadic eye movements displace visual images on the retina and yet the brain perceives visual stability. Because this percept of visual stability has been shown to be influenced by prior expectations, we tested the hypothesis that it is Bayesian. The key prediction was that priors would be used more as sensory uncertainty increases. Humans and rhesus macaques reported whether an image moved during saccades. We manipulated both prior expectations and levels of sensory uncertainty. All psychophysical data were compared with the predictions of Bayesian ideal observer models. We found that humans were Bayesian for continuous judgments. For categorical judgments, however, they were anti-Bayesian: they used their priors less with greater uncertainty. We studied this categorical result further in macaques. The animals’ judgments were similarly anti-Bayesian for sensory uncertainty caused by external, image noise, but Bayesian for uncertainty due to internal, motor-driven noise. A discriminative learning model explained the anti-Bayesian effects. We conclude that active vision uses both Bayesian and discriminative models depending on task requirements (continuous vs categorical) and the source of uncertainty (image noise vs motor-driven noise). In the context of previous knowledge about the saccadic system, our results provide an example of how the comparative analysis of Bayesian versus non-Bayesian models of perception offers novel insights into underlying neural organization.

Funder

DU | Duke Institute for Brain Sciences, Duke University

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Reference87 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3