Generalizing the Enhanced-Deep-Super-Resolution Neural Network to Brain MR Images: A Retrospective Study on the Cam-CAN Dataset

Author:

Fiscone CristianaORCID,Curti NicoORCID,Ceccarelli MattiaORCID,Remondini DanielORCID,Testa ClaudiaORCID,Lodi RaffaeleORCID,Tonon CaterinaORCID,Manners David NeilORCID,Castellani GastoneORCID

Abstract

The Enhanced-Deep-Super-Resolution (EDSR) model is a state-of-the-art convolutional neural network suitable for improving image spatial resolution. It was previously trained with general-purpose pictures and then, in this work, tested on biomedical magnetic resonance (MR) images, comparing the network outcomes with traditional up-sampling techniques. We explored possible changes in the model response when different MR sequences were analyzed. T1w and T2w MR brain images of 70 human healthy subjects (F:M, 40:30) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) repository were down-sampled and then up-sampled using EDSR model and BiCubic (BC) interpolation. Several reference metrics were used to quantitatively assess the performance of up-sampling operations (RMSE, pSNR, SSIM, and HFEN). Two-dimensional and three-dimensional reconstructions were evaluated. Different brain tissues were analyzed individually. The EDSR model was superior to BC interpolation on the selected metrics, both for two- and three- dimensional reconstructions. The reference metrics showed higher quality of EDSR over BC reconstructions for all the analyzed images, with a significant difference of all the criteria in T1w images and of the perception-based SSIM and HFEN in T2w images. The analysis per tissue highlights differences in EDSR performance related to the gray-level values, showing a relative lack of outperformance in reconstructing hyperintense areas. The EDSR model, trained on general-purpose images, better reconstructs MR T1w and T2w images than BC, without any retraining or fine-tuning. These results highlight the excellent generalization ability of the network and lead to possible applications on other MR measurements.

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3