Author:
Huang Yiyuan Teresa,Wu Chien-Te,Koike Shinsuke,Chao Zenas C.
Abstract
Mismatch negativity (MMN) is commonly recognized as a neural signal of prediction error evoked by deviants from the expected patterns of sensory input. Studies show that MMN diminishes when sequence patterns become more predictable over a longer timescale. This implies that MMN is composed of multiple subcomponents, each responding to different levels of temporal regularities. To probe the hypothesized subcomponents in MMN, we record human electroencephalography during an auditory local–global oddball paradigm where the tone-to-tone transition probability (local regularity) and the overall sequence probability (global regularity) are manipulated to control temporal predictabilities at two hierarchical levels. We find that the size of MMN is correlated with both probabilities and the spatiotemporal structure of MMN can be decomposed into two distinct subcomponents. Both subcomponents appear as negative waveforms, with one peaking early in the central-frontal area and the other late in a more frontal area. With a quantitative predictive coding model, we map the early and late subcomponents to the prediction errors that are tied to local and global regularities, respectively. Our study highlights the hierarchical complexity of MMN and offers an experimental and analytical platform for developing a multitiered neural marker applicable in clinical settings.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Science and Technology of Taiwan
World Premier International Research Center Initiative
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献