Efferent Activity Controls Hair Cell Response to Mechanical Overstimulation

Author:

Lin Chia-Hsi Jessica,Bozovic Dolores

Abstract

AbstractThe efferent pathway strengthens the auditory system for optimal performance by fine-tuning the response and protecting the inner ear from noise-induced damage. Although it has been well documented that efference helps defend against hair cell and synaptic extinction, the mechanisms of its otoprotective role have still not been established. Specifically, the effect of efference on an individual hair cell’s recovery from mechanical overstimulation has not been demonstrated. In the current work, we explored the impact of efferent stimulation on this recovery usingin vitropreparations of hair cells situated in the sacculi of American bullfrogs (Rana catesbeiana). In the absence of efferent stimulus, exposure of a hair bundle to high-amplitude mechanical deflection detuned it from its oscillatory regime, with the extent of detuning dependent on the applied signal. Efferent actuation concomitant with the hair bundle’s relaxation from a high-amplitude deflection notably changed the recovery profile and often entirely eliminated the transition to quiescence. Our findings indicate that the efferent system acts as a control mechanism that determines the dynamic regime in which the hair cell is poised.

Funder

DOD | US Army | RDECOM | Army Research Office

National Science Foundation

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3