A Novel Flp Reporter Mouse Shows That TRPA1 Expression Is Largely Limited to Sensory Neuron Subsets

Author:

Patil Mayur J.,Kim Seol-Hee,Bahia Parmvir K.ORCID,Nair Sanjay S.,Darcey Teresa S.,Fiallo Jailene,Zhu Xiao Xia,Frisina Robert D.,Hadley Stephen H.,Taylor-Clark Thomas E.ORCID

Abstract

AbstractTransient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons. Here, we developed a knock-in mouse that expresses the recombinase FlpOin TRPA1-expressing cells. We crossed theTRPA1Flpmouse with theR26ai65fmouse that expresses tdTomato in a Flp-sensitive manner. We found tdTomato expression correlated well with TRPA1 mRNA expression and sensitivity to TRPA1 agonists in subsets of TRPV1 (transient receptor potential vanilloid receptor type 1)-expressing neurons in the vagal ganglia and dorsal root ganglia (DRGs), although tdTomato expression efficiency was limited in DRG. We observed tdTomato-expressing afferent fibers centrally (in the medulla and spinal cord) and peripherally in the esophagus, gut, airways, bladder, and skin. Furthermore, chemogenetic activation of TRPA1-expressing nerves in the paw evoked flinching behavior. tdTomato expression was very limited in other cell types. We found tdTomato in subepithelial cells in the gut mucosa but not in enterochromaffin cells. tdTomato was also observed in supporting cells within the cochlea, but not in hair cells. Lastly, tdTomato was occasionally observed in neurons in the somatomotor cortex and the piriform area, but not in astrocytes or vascular endothelium. Thus, this novel mouse strain may be useful for mapping and manipulating TRPA1-expressing cells and deciphering the role of TRPA1 in physiological and pathophysiological processes.

Funder

HHS | National Institutes of Health

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3