Dual Receptive Fields Underlying Target and Wide-Field Motion Sensitivity in Looming-Sensitive Descending Neurons

Author:

Nicholas Sarah,Ogawa Yuri,Nordström Karin

Abstract

AbstractResponding rapidly to visual stimuli is fundamental for many animals. For example, predatory birds and insects alike have amazing target detection abilities, with incredibly short neural and behavioral delays, enabling efficient prey capture. Similarly, looming objects need to be rapidly avoided to ensure immediate survival, as these could represent approaching predators. MaleEristalis tenaxhoverflies are nonpredatory, highly territorial insects that perform high-speed pursuits of conspecifics and other territorial intruders. During the initial stages of the pursuit, the retinal projection of the target is very small, but this grows to a larger object before physical interaction. Supporting such behaviors,E. tenaxand other insects have both target-tuned and loom-sensitive neurons in the optic lobes and the descending pathways. We here show that these visual stimuli are not necessarily encoded in parallel. Indeed, we describe a class of descending neurons that respond to small targets, to looming and to wide-field stimuli. We show that these descending neurons have two distinct receptive fields where the dorsal receptive field is sensitive to the motion of small targets and the ventral receptive field responds to larger objects or wide-field stimuli. Our data suggest that the two receptive fields have different presynaptic input, where the inputs are not linearly summed. This novel and unique arrangement could support different behaviors, including obstacle avoidance, flower landing, and target pursuit or capture.

Funder

DOD | USAF | AMC | Air Force Office of Scientific Research

Australian Research Council

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3