Microtubule-Stabilizer Epothilone B Delays Anesthetic-Induced Unconsciousness in Rats

Author:

Khan Sana,Huang Yixiang,Timuçin Derin,Bailey Shantelle,Lee Sophia,Lopes Jessica,Gaunce Emeline,Mosberger Jasmine,Zhan Michelle,Abdelrahman Bothina,Zeng Xiran,Wiest Michael C.

Abstract

Volatile anesthetics are currently believed to cause unconsciousness by acting on one or more molecular targets including neural ion channels, receptors, mitochondria, synaptic proteins, and cytoskeletal proteins. Anesthetic gases including isoflurane bind to cytoskeletal microtubules (MTs) and dampen their quantum optical effects, potentially contributing to causing unconsciousness. This possibility is supported by the finding that taxane chemotherapy consisting of MT-stabilizing drugs reduces the effectiveness of anesthesia during surgery in human cancer patients. In order to experimentally assess the contribution of MTs as functionally relevant targets of volatile anesthetics, we measured latencies to loss of righting reflex (LORR) under 4% isoflurane in male rats injected subcutaneously with vehicle or 0.75 mg/kg of the brain-penetrant MT–stabilizing drug epothilone B (epoB). EpoB-treated rats took an average of 69 s longer to become unconscious as measured by latency to LORR. This was a statistically significant difference corresponding to a standardized mean difference (Cohen'sd) of 1.9, indicating a “large” normalized effect size. The effect could not be accounted for by tolerance from repeated exposure to isoflurane. Our results suggest that binding of the anesthetic gas isoflurane to MTs causes unconsciousness and loss of purposeful behavior in rats (and presumably humans and other animals). This finding is predicted by models that posit consciousness as a property of a quantum physical state of neural MTs.

Funder

Wellesley College Neuroscience Department

Nancy and Gary Hough Memorial Endowed Fund for Neuroscience

Helen Wallace '33 Summer Research Health Professions Fund

Department of Neuroscience Klein Fund

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3