Ultrasensitive Quantification of Multiple Estrogens in Songbird Blood and Microdissected Brain by LC-MS/MS

Author:

Jalabert CeciliaORCID,Shock Maria A.,Ma Chunqi,Bootsma Taylor J.,Liu Megan Q.,Soma Kiran K.

Abstract

AbstractNeuroestrogens are synthesized within the brain and regulate social behavior, learning and memory, and cognition. In song sparrows,Melospiza melodia, 17β-estradiol (17β-E2) promotes aggressive behavior, including during the nonbreeding season when circulating steroid levels are low. Estrogens are challenging to measure because they are present at very low levels, and current techniques often lack the sensitivity required. Furthermore, current methods often focus on 17β-E2and disregard other estrogens. Here, we developed and validated a method to measure four estrogens [estrone (E1), 17β-E2, 17α-estradiol (17α-E2), estriol (E3)] simultaneously in microdissected songbird brain, with high specificity, sensitivity, accuracy, and precision. We used liquid chromatography tandem mass spectrometry (LC-MS/MS), and to improve sensitivity, we derivatized estrogens using 1,2-dimethylimidazole-5-sulfonyl-chloride (DMIS). The straightforward protocol improved sensitivity by 10-fold for some analytes. There is substantial regional variation in neuroestrogen levels in brain areas that regulate social behavior in male song sparrows. For example, the auditory area NCM, which has high aromatase levels, has the highest E1and 17β-E2levels. In contrast, estrogen levels in blood are very low. Estrogen levels in both brain and circulation are lower in the nonbreeding season than in the breeding season. This technique will be useful for estrogen measurement in songbirds and potentially other animal models.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Canada Foundation for Innovation

Agencia Nacional de Investigación e Innovación

University of British Columbia

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3