Dscam1 Has Diverse Neuron Type-Specific Functions in the DevelopingDrosophilaCNS

Author:

Wilhelm Nicole,Kumari Shikha,Krick Niklas,Rickert Christof,Duch Carsten

Abstract

AbstractTwo key features endowDrosophilaDown syndrome cell adhesion molecule 1 (Dscam1) with the potential to provide a ubiquitous code for neuronal arbor self-avoidance. First, Dscam1 contains three large cassettes of alternative exons, so that stochastic alternative splicing yields 19,008 Dscam1 isoforms with different Ig ectodomains. Second, each neuron expresses a different subset of Dscam1 isoforms, and isoform-specific homophilic binding causes repulsion. This results in even spacing of self-arbors, while processes of other neurons can intermingle and share the same synaptic partners. In principle, this Dscam1 code could ensure arbor spacing of all neurons inDrosophila. This model is strongly supported by studies on dendrite spacing in the peripheral nervous system and studies on axonal branch segregation during brain development. However, the situation is less clear for central neuron dendrites, the major substrate for synaptic input in the CNS. We systematically tested the role of Dscam1 for dendrite growth and spacing in eight different types of identified central neurons. Knockdown of Dscam1 causes severe dendritic clumping and length reductions in efferent glutamatergic and aminergic neurons. The primary cause for these dendritic phenotypes could be impaired self-avoidance, a growth defect, or both. In peptidergic efferent neurons, many central arbors are not formed, arguing for a growth defect. By contrast, knockdown of Dscam1 does not affect dendrite growth or spacing in any of the five different types of interneurons tested. Axon arbor patterning is not affected in any neuron type tested. We conclude that Dscam1 mediates diverse, neuron type-specific functions during central neuron arbor differentiation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3