Dorsal Raphe 5-HT Neurons Utilize, But Do Not Generate, Negative Aversive Prediction Errors

Author:

Walker Rachel A.,Suthard Rebecca L.,Perison Taylor N.,Sheehan Nora M.,Dwyer Caitlin C.,Lee Jillian K.,Enabulele Eghosa K.,Ray Madelyn H.,McDannald Michael A.ORCID

Abstract

AbstractThe dorsal raphe nucleus (DRN) contains the largest population of serotonin (5-HT) neurons in the central nervous system. 5-HT, synthesized via tryptophan hydroxylase 2 (Tph2), is a widely functioning neuromodulator implicated in fear learning. Here, we sought to investigate whether DRN 5-HT is necessary to reduce fear via negative prediction error (–PE). Using male and female TPH2-cre rats, DRNtph2+cells were selectively deleted via cre-caspase (rAAV5-Flex-taCasp3-TEVp) in experiment 1. Rats then underwent fear discrimination during which three cues were associated with unique foot shock probabilities: safetyp = 0.00, uncertaintyp = 0.375, and dangerp = 1.00. Rats then received selective extinction to the uncertainty cue, a behavioral manipulation designed to probe –PE. Deleting DRNtph2+cells had no impact on initial discrimination but slowed selective extinction. In experiment 2, we used a within-subjects optogenetic inhibition design to causally implicate DRNtph2+cells in prediction error signaling. Male and female TPH2-cre rats received intra-DRN infusions of cre-dependent halorhodopsin (rAAV5-Ef1a-DIO-eNpHR3.0-eYFP) or cre-YFP. DRNtph2+cells were inhibited specifically during the time of prediction error or a control period. Illumination during either positive prediction error (+PE) or control periods had no impact on fear to the uncertainty cue. Inhibition of DRNtph2+cells at the time of –PE did not impact immediate fear, but facilitated selective extinction in postillumination sessions. Together, these results demonstrate a role for DRNtph2+cells in using, but not generating, –PE to weaken cue-shock associations.

Funder

HHS | NIH | National Institute of Mental Health

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3