Decoding the Time Course of Spatial Information from Spiking and Local Field Potential Activities in the Superior Colliculus

Author:

Heusser Michelle R.ORCID,Bourrelly Clara,Gandhi Neeraj J.ORCID

Abstract

AbstractPlace code representation is ubiquitous in circuits that encode spatial parameters. For visually guided eye movements, neurons in many brain regions emit spikes when a stimulus is presented in their receptive fields and/or when a movement is directed into their movement fields. Crucially, individual neurons respond for a broad range of directions or eccentricities away from the optimal vector, making it difficult to decode the stimulus location or the saccade vector from each cell’s activity. We investigated whether it is possible to decode the spatial parameter with a population-level analysis, even when the optimal vectors are similar across neurons. Spiking activity and local field potentials (LFPs) in the superior colliculus (SC) were recorded with a laminar probe as monkeys performed a delayed saccade task to one of eight targets radially equidistant in direction. A classifier was applied offline to decode the spatial configuration as the trial progresses from sensation to action. For spiking activity, decoding performance across all eight directions was highest during the visual and motor epochs and lower but well above chance during the delay period. Classification performance followed a similar pattern for LFP activity too, except the performance during the delay period was limited mostly to the preferred direction. Increasing the number of neurons in the population consistently increased classifier performance for both modalities. Overall, this study demonstrates the power of population activity for decoding spatial information not possible from individual neurons.

Funder

HHS | NIH | National Eye Institute

U.S. Department of Education

HHS | NIH | National Institute of General Medical Sciences

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3