A Behavioral Receptive Field for Ocular Following in Monkeys: Spatial Summation and Its Spatial Frequency Tuning

Author:

Barthélemy Frédéric V.,Fleuriet Jérome,Perrinet Laurent U.ORCID,Masson Guillaume S.

Abstract

In human and nonhuman primates, reflexive tracking eye movements can be initiated at very short latency in response to a rapid shift of the image. Previous studies in humans have shown that only a part of the central visual field is optimal for driving ocular following responses. Herein, we have investigated spatial summation of motion information, across a wide range of spatial frequencies and speeds of drifting gratings by recording short-latency ocular following responses in macaque monkeys. We show that the optimal stimulus size for driving ocular responses cover a small (diameter, <20°), central part of the visual field that shrinks with higher spatial frequency. This signature of linear motion integration remains invariant with speed and temporal frequency. For low and medium spatial frequencies, we found a strong suppressive influence from surround motion, evidenced by a decrease of response amplitude for stimulus sizes larger than optimal. Such suppression disappears with gratings at high frequencies. The contribution of peripheral motion was investigated by presenting grating annuli of increasing eccentricity. We observed an exponential decay of response amplitude with grating eccentricity, the decrease being faster for higher spatial frequencies. Weaker surround suppression can thus be explained by sparser eccentric inputs at high frequencies. A difference-of-Gaussians model best renders the antagonistic contributions of peripheral and central motions. Its best-fit parameters coincide with several, well known spatial properties of area MT neuronal populations. These results describe the mechanism by which central motion information is automatically integrated in a context-dependent manner to drive ocular responses.

Funder

Agence Nationale de la Recherche

Fondation pour la Recherche Médicale

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3