Distinguishing Fine Structure and Summary Representation of Sound Textures from Neural Activity

Author:

Berto MartinaORCID,Ricciardi EmilianoORCID,Pietrini PietroORCID,Weisz Nathan,Bottari DavideORCID

Abstract

AbstractThe auditory system relies on both local and summary representations; acoustic local features exceeding system constraints are compacted into a set of summary statistics. Such compression is pivotal for sound-object recognition. Here, we assessed whether computations subtending local and statistical representations of sounds could be distinguished at the neural level. A computational auditory model was employed to extract auditory statistics from natural sound textures (i.e., fire, rain) and to generate synthetic exemplars where local and statistical properties were controlled. Twenty-four human participants were passively exposed to auditory streams while the electroencephalography (EEG) was recorded. Each stream could consist of short, medium, or long sounds to vary the amount of acoustic information. Short and long sounds were expected to engage local or summary statistics representations, respectively. Data revealed a clear dissociation. Compared with summary-based ones, auditory-evoked responses based on local information were selectively greater in magnitude in short sounds. Opposite patterns emerged for longer sounds. Neural oscillations revealed that local features and summary statistics rely on neural activity occurring at different temporal scales, faster (beta) or slower (theta-alpha). These dissociations emerged automatically without explicit engagement in a discrimination task. Overall, this study demonstrates that the auditory system developed distinct coding mechanisms to discriminate changes in the acoustic environment based on fine structure and summary representations.

Funder

PRIN 2017

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3