Impairments in Fear Extinction Memory and Basolateral Amygdala Plasticity in the TgF344-AD Rat Model of Alzheimer’s Disease Are Distinct from Nonpathological Aging

Author:

Hernandez Caesar M.ORCID,Jackson Nateka L.,Hernandez Abbi R.ORCID,McMahon Lori L.ORCID

Abstract

AbstractFear-based disorders such as post-traumatic stress disorder (PTSD) steepen age-related cognitive decline and double the risk for developing Alzheimer’s disease (AD). Because of the seemingly hyperactive properties of fear memories, PTSD symptoms can worsen with age. Perturbations in the synaptic circuitry supporting fear memory extinction are key neural substrates of PTSD. The basolateral amygdala (BLA) is a medial temporal lobe structure that is critical in the encoding, consolidation, and retrieval of fear memories. As little is known about fear extinction memory and BLA synaptic dysfunction within the context of aging and AD, the goal of this study was to investigate how fear extinction memory deficits and basal amygdaloid nucleus (BA) synaptic dysfunction differentially associate in nonpathologic aging and AD in the TgF344AD (TgAD) rat model of AD. Young, middle-aged, and older-aged WT and TgAD rats were trained on a delay fear conditioning and extinction procedure beforeex vivoextracellular field potential recording experiments in the BA. Relative to young WT rats, long-term extinction memory was impaired, and in general, was associated with a hyperexcitable BA and impaired LTP in TgAD rats at all ages. In contrast, long-term extinction memory was impaired in aged WT rats and was associated with impaired LTP but not BA hyperexcitability. Interestingly, the middle-aged TgAD rats showed intact short-term extinction and BA LTP, which is suggestive of a compensatory mechanism, whereas differential neural recruitment in older-aged WT rats may have facilitated short-term extinction. As such, associations between fear extinction memory and amygdala deficits in nonpathologic aging and AD are dissociable.

Funder

HHS | NIH | NICHD | National Center for Medical Rehabilitation Research

HHS | NIH | National Institute on Aging

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3