Author:
Wen Haojie,Wang Dahui,Bi Yanchao
Abstract
Language is an evolutionarily salient faculty for humans that relies on a distributed brain network spanning across frontal, temporal, parietal, and subcortical regions. To understand whether the complex language network shares common or distinct genetic mechanisms, we examined the relationships between the genetic effects underlying the brain responses to language and a set of object domains that have been suggested to coevolve with language: tools, faces (indicating social), and body parts (indicating social and gesturing). Analyzing the twin datasets released by the Human Connectome Project that had functional magnetic resonance imaging data from human twin subjects (monozygotic and dizygotic) undergoing language and working memory tasks contrasting multiple object domains (198 females and 144 males for the language task; 192 females and 142 males for the working memory task), we identified a set of cortical regions in the frontal and temporal cortices and subcortical regions whose activity to language was significantly genetically influenced. The heterogeneity of the genetic effects among these language clusters was corroborated by significant differences of the human gene expression profiles (Allen Human Brain Atlas dataset). Among them, the bilateral basal ganglia (mainly dorsal caudate) exhibited a common genetic basis for language, tool, and body part processing, and the right superior temporal gyrus exhibited a common genetic basis for language and tool processing across multiple types of analyses. These results uncovered the heterogeneous genetic patterns of language neural processes, shedding light on the evolution of language and its shared origins with tools and bodily functions.
Funder
STI2030-Major Project
National Natural science Foundation of China
Changjiang Scholar Professorship Award
National Key RD Program of China
the Fundamental Research Funds for the Central Universities