The Effect of the Peristimulus α Phase on Visual Perception through Real-Time Phase-Locked Stimulus Presentation

Author:

Tseng Chih-Hsin,Chen Jyh-Horng,Hsu Shen-MouORCID

Abstract

AbstractThe α phase has been theorized to reflect fluctuations in cortical excitability and thereby impose a cyclic influence on visual perception. Despite its appeal, this notion is not fully substantiated, as both supporting and opposing evidence has been recently reported. In contrast to previous research, this study examined the effect of the peristimulus instead of prestimulus phase on visual detection through a real-time phase-locked stimulus presentation (PLSP) approach. Specifically, we monitored phase data from magnetoencephalography (MEG) recordings over time, with a newly developed algorithm based on adaptive Kalman filtering (AKF). This information guided online presentations of masked stimuli that were phased-locked to different stages of the α cycle while healthy humans concurrently performed detection tasks. Behavioral evidence showed that the overall detection rate did not significantly vary according to the four predetermined peristimulus α phases. Nevertheless, the follow-up analyses highlighted that the phase at 90° relative to 180° likely enhanced detection. Corroborating neural parietal activity showed that early interaction between α phases and incoming stimuli orchestrated the neural representation of the hits and misses of the stimuli. This neural representation varied according to the phase and in turn shaped the behavioral outcomes. In addition to directly investigating to what extent fluctuations in perception can be ascribed to the α phases, this study suggests that phase-dependent perception is not as robust as previously presumed, and might also depend on how the stimuli are differentially processed as a result of a stimulus-phase interaction, in addition to reflecting alternations of the perceptual states between phases.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3