Modulation of Motor Cortical Inhibition and Facilitation by Touch Sensation from the Glabrous Skin of the Human Hand

Author:

Bao Shancheng,Wang YiyuORCID,Escalante Yori R.,Li Yue,Lei Yuming

Abstract

Touch sensation from the glabrous skin of the hand is essential for precisely controlling dexterous movements, yet the neural mechanisms by which tactile inputs influence motor circuits remain largely unexplored. By pairing air-puff tactile stimulation on the hand's glabrous skin with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), we examined the effects of tactile stimuli from single or multiple fingers on corticospinal excitability and M1's intracortical circuits. Our results showed that when we targeted the hand's first dorsal interosseous (FDI) muscle with TMS, homotopic (index finger) tactile stimulation, regardless of its point (fingertip or base), reduced corticospinal excitability. Conversely, heterotopic (ring finger) tactile stimulation had no such effect. Notably, stimulating all five fingers simultaneously led to a more pronounced decrease in corticospinal excitability than stimulating individual fingers. Furthermore, tactile stimulation significantly increased intracortical facilitation (ICF) and decreased long-interval intracortical inhibition (LICI) but did not affect short-interval intracortical inhibition (SICI). Considering the significant role of the primary somatosensory cortex (S1) in tactile processing, we also examined the effects of downregulating S1 excitability via continuous theta burst stimulation (cTBS) on tactile–motor interactions. Following cTBS, the inhibitory influence of tactile inputs on corticospinal excitability was diminished. Our findings highlight the spatial specificity of tactile inputs in influencing corticospinal excitability. Moreover, we suggest that tactile inputs distinctly modulate M1's excitatory and inhibitory pathways, with S1 being crucial in facilitating tactile–motor integration.

Funder

American Heart Association

TIRR Foundation

Paralyzed Veterans of America Research Foundation

Craig H. Neilsen Foundation

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3