Capacity Limits Lead to Information Bottlenecks in Ongoing Rapid Motor Behaviors

Author:

Moulton Richard HughORCID,Rudie Karen,Dukelow Sean P.,Benson Brian W.,Scott Stephen H.ORCID

Abstract

AbstractStudies of ongoing, rapid motor behaviors have often focused on the decision-making implicit in the task. Here, we instead study how decision-making integrates with the perceptual and motor systems and propose a framework of limited-capacity, pipelined processing with flexible resources to understand rapid motor behaviors. Results from three experiments show that human performance is consistent with our framework: participants perform objectively worse as task difficulty increases, and, surprisingly, this drop in performance is largest for the most skilled performers. As well, our analysis shows that the worst-performing participants can perform equally well under increased task demands, which is consistent with flexible neural resources being allocated to reduce bottleneck effects and improve overall performance. We conclude that capacity limits lead to information bottlenecks and that processes like attention help reduce the effects that these bottlenecks have on maximal performance.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Ontario Research Foundation

Queen's University

Walter C. Sumner Foundation

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3