Abstract
Stress-inducing events during pregnancy are associated with aberrant neurodevelopment resulting in adverse psychiatric outcomes, including autism spectrum disorder (ASD). While numerous preclinical models for the study of ASD are frequently generated using C57BL/6J mice, few studies have investigated the effects of prenatal stress on this genetic background. In the current manuscript, we stressed C57BL/6 dams during gestation and examined numerous behavioral and molecular endophenotypes in the adult male and female offspring to characterize the resultant phenotype as compared with offspring born from nonstressed (NS) dams. Adult mice born from prenatal restraint stressed (PRS) dams demonstrated reduced sociability and reciprocal social interaction along with increased marble burying behaviors relative to mice born from nonstressed control dams. Differential expression of genes related to excitatory and inhibitory neurotransmission was evaluated in the medial prefrontal cortex, amygdala, hippocampus, nucleus accumbens and caudate putamen via qRT-PCR. The male PRS mouse behavioral phenotype coincided with aberrant expression of glutamate and GABA marker genes (e.g., Grin1, Grin2b, Gls, Gat1, Reln) in neural substrates of social behavior. Rescue of the male PRS sociability deficit by a known antipsychotic with epigenetic properties (i.e., clozapine (5 mg/kg) + 18 hr washout) indicated possible epigenetic regulation of genes that govern sociability. Clozapine treatment increased the expression levels of genes involved in DNA methylation, histone methylation, and histone acetylation in the nucleus accumbens. Identification of etiology-specific mechanisms underlying clinically relevant behavioral phenotypes may ultimately provide novel therapeutic interventions for the treatment of psychiatric disorders including ASD.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献