Opponent Learning with Different Representations in the Cortico-Basal Ganglia Circuits

Author:

Morita KenjiORCID,Shimomura Kanji,Kawaguchi YasuoORCID

Abstract

AbstractThe direct and indirect pathways of the basal ganglia (BG) have been suggested to learn mainly from positive and negative feedbacks, respectively. Since these pathways unevenly receive inputs from different cortical neuron types and/or regions, they may preferentially use different state/action representations. We explored whether such a combined use of different representations, coupled with different learning rates from positive and negative reward prediction errors (RPEs), has computational benefits. We modeled animal as an agent equipped with two learning systems, each of which adopted individual representation (IR) or successor representation (SR) of states. With varying the combination of IR or SR and also the learning rates from positive and negative RPEs in each system, we examined how the agent performed in a dynamic reward navigation task. We found that combination of SR-based system learning mainly from positive RPEs and IR-based system learning mainly from negative RPEs could achieve a good performance in the task, as compared with other combinations. In such a combination of appetitive SR-based and aversive IR-based systems, both systems show activities of comparable magnitudes with opposite signs, consistent with the suggested profiles of the two BG pathways. Moreover, the architecture of such a combination provides a novel coherent explanation for the functional significance and underlying mechanism of diverse findings about the cortico-BG circuits. These results suggest that particularly combining different representations with appetitive and aversive learning could be an effective learning strategy in certain dynamic environments, and it might actually be implemented in the cortico-BG circuits.

Funder

MEXT | Japan Society for the Promotion of Science

National Institute for Physiological Sciences

the Naito Foundation

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3