Navigating the Statistical Minefield of Model Selection and Clustering in Neuroscience

Author:

Király Bálint,Hangya BalázsORCID

Abstract

AbstractModel selection is often implicit: when performing an ANOVA, one assumes that the normal distribution is a good model of the data; fitting a tuning curve implies that an additive and a multiplicative scaler describes the behavior of the neuron; even calculating an average implicitly assumes that the data were sampled from a distribution that has a finite first statistical moment: the mean. Model selection may be explicit, when the aim is to test whether one model provides a better description of the data than a competing one. As a special case, clustering algorithms identify groups with similar properties within the data. They are widely used from spike sorting to cell type identification to gene expression analysis. We discuss model selection and clustering techniques from a statistician’s point of view, revealing the assumptions behind, and the logic that governs the various approaches. We also showcase important neuroscience applications and provide suggestions how neuroscientists could put model selection algorithms to best use as well as what mistakes should be avoided.

Funder

Magyar Tudományos Akadémia

Nemzeti Kutatási és Technológiai Hivatal

EC | European Research Council

Ministry for Innovation and Technology

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Reference142 articles.

1. A neural circuit for spatial summation in visual cortex

2. Model selection for ecologists: the worldviews of AIC and BIC

3. Fitting autoregressive models for prediction

4. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: 2nd International symposium on information theory, pp 267–281. Budapest: Akadémiai Kiadó.

5. A new look at the statistical model identification

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3