Abstract
AbstractCocaine-induced changes in the expression of the glutamate-related scaffolding protein Homer2 influence this drug’s psychostimulant and rewarding properties. In response to neuronal activity, Homer2 is phosphorylated on S117/S216 by calcium-calmodulin kinase IIα (CaMKIIα), which induces a rapid dissociation of mGlu5-Homer2 scaffolds. Herein, we examined the requirement for Homer2 phosphorylation in cocaine-induced changes in mGlu5-Homer2 coupling, to include behavioral sensitivity to cocaine. For this, mice with alanine point mutations at (S117/216)-Homer2 (Homer2AA/AA) were generated, and we determined their affective, cognitive and sensorimotor phenotypes, as well as cocaine-induced changes in conditioned reward and motor hyperactivity. TheHomer2AA/AAmutation prevented activity-dependent phosphorylation of S216 Homer2 in cortical neurons, butHomer2AA/AAmice did not differ from wild-type (WT) controls with respect to Morris maze performance, acoustic startle, spontaneous or cocaine-induced locomotion.Homer2AA/AAmice exhibited signs of hypoanxiety similar to the phenotype of transgenic mice with a deficit in signal-regulated mGluR5 phosphorylation (Grm5AA/AA). However, opposite ofGrm5AA/AAmice,Homer2AA/AAmice were less sensitive to the aversive properties of high-dose cocaine under both place-conditioning and taste-conditioning procedures. Acute injection with cocaine caused dissociation of mGluR5 and Homer2 in striatal lysates from WT, but notHomer2AA/AAmice, suggesting a molecular basis for the deficit in cocaine aversion. These findings indicate that CaMKIIα-dependent phosphorylation of Homer2 gates the negative motivational valence of high-dose cocaine via regulation of mGlu5 binding, furthering an important role for dynamic changes in mGlu5-Homer interactions in addiction vulnerability.
Funder
HHS | NIH | National Institute on Drug Abuse
HHS | NIH | National Institute on Alcohol Abuse and Alcoholism
HHS | NIH | National Institute of Neurological Disorders and Stroke
National Science Foundation
FRAXA Research Foundation
Subject
General Medicine,General Neuroscience