Abstract
When presented shortly after another, discrete pictures are naturally perceived as continuous. The neuronal mechanism underlying such continuous or discrete perception is not well understood. While continuous alpha oscillations are a candidate for orchestrating such neuronal mechanisms, recent evidence is mixed. In this study, we investigated the influence of prestimulus alpha oscillation on visual temporal perception. Specifically, we were interested in whether prestimulus alpha phase modulates neuronal and perceptual processes underlying discrete or continuous perception. Participants had to report the location of a missing object in a visual temporal integration task, while simultaneously MEG data were recorded. Using source reconstruction, we evaluated local phase effects by contrasting phase angle values between correctly and incorrectly integrated trials. Our results show a phase opposition cluster between −0.8 and −0.5 s (relative to stimulus presentation) and between 6 and 20 Hz. These momentary phase angle values were correlated with behavioral performance and event-related potential amplitude. There was no evidence that frequency defined a window of temporal integration.
Funder
Deutsche Forschungsgemeinschaft