Hierarchical Individual Naturalistic Functional Brain Networks with Group Consistency Uncovered by a Two-Stage NAS-Volumetric Sparse DBN Framework

Author:

Xu Shuhan,Ren Yudan,Tao Zeyang,Song Limei,He Xiaowei

Abstract

AbstractThe functional magnetic resonance imaging under naturalistic paradigm (NfMRI) showed great advantages in identifying complex and interactive functional brain networks (FBNs) because of its dynamics and multimodal information. In recent years, various deep learning models, such as deep convolutional autoencoder (DCAE), deep belief network (DBN), and volumetric sparse DBN (vsDBN), can obtain hierarchical FBNs and temporal features from fMRI data. Among them, the vsDBN model revealed a good capability in identifying hierarchical FBNs by modeling fMRI volume images. However, because of the high dimensionality of fMRI volumes and the diverse training parameters of deep learning methods, especially the network architecture that is the most critical parameter for uncovering the hierarchical organization of human brain function, researchers still face challenges in designing an appropriate deep learning framework with automatic network architecture optimization to model volumetric NfMRI. In addition, most of the existing deep learning models ignore the group-wise consistency and intersubject variation properties embedded in NfMRI volumes. To solve these problems, we proposed a two-stage neural architecture search (NAS) and vsDBN model (two-stage NAS-vsDBN model) to identify the hierarchical human brain spatiotemporal features possessing both group consistency and individual uniqueness under naturalistic condition. Moreover, our model defined reliable network structure for modeling volumetric NfMRI data via NAS framework, and the group-level and individual-level FBNs and associated temporal features exhibited great consistency. In general, our method well identified the hierarchical temporal and spatial features of the brain function and revealed the crucial properties of neural processes under natural viewing condition.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Provincial

Youth Innovation Team Foundation of Education Department of Shaanxi Provincial Government

China Postdoctoral Science Foundation Funded Project

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3