Abstract
AbstractThe midbrain periaqueductal gray (PAG), particularly its ventrolateral column (vlPAG), is part of a key descending pathway that modulates nociception, fear and anxiety behaviors in both humans and rodents. It has been previously demonstrated that inhibitory GABAergic neurons within the vlPAG have a major role in this nociceptive modulation. However, the PAG contains a diverse range of neuronal subtypes and the contribution of different subtypes of inhibitory neurons to nociceptive control has not been investigated. Here, we employed a chemogenetic strategy in mice that express Cre recombinase under the promotor for the glycine transporter 2 (GlyT2::cre) to modulate a novel group of glycinergic neurons within the vlPAG and then investigate their role in nociceptive control. We show that activation of GlyT2-PAG neurons enhances cold and noxious heat responses and increases locomotor activity (LMA) in both male and female mice. In contrast, inhibition of GlyT2-PAG neurons reduced nociceptive responses, while locomotor behaviors were unaffected. Our findings demonstrate that GlyT2+neurons in the vlPAG modulate nociception and suggest that strategies targeting GlyT2-PAG neurons could be used to design novel analgesic therapies.
Funder
Ernest Heine Family Foundation
Pain Foundation Ltd
Australian Government Research Training Postgraduate scholarship
Subject
General Medicine,General Neuroscience
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献