Visual Working Memory Recruits Two Functionally Distinct Alpha Rhythms in Posterior Cortex

Author:

Rodriguez-Larios Julio,ElShafei Alma,Wiehe Melanie,Haegens SaskiaORCID

Abstract

AbstractOscillatory activity in the human brain is dominated by posterior alpha oscillations (8–14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (∼10 Hz), previous work suggests that individual alpha frequency reflects a spatial mixture of different brain rhythms. In this study, we assess whether independent component analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

National Institute of Health

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3