Attractor-Like Dynamics Extracted from Human Electrocorticographic Recordings Underlie Computational Principles of Auditory Bistable Perception

Author:

Melland Pake,Curtu RodicaORCID

Abstract

In bistable perception, observers experience alternations between two interpretations of an unchanging stimulus. Neurophysiological studies of bistable perception typically partition neural measurements into stimulus-based epochs and assess neuronal differences between epochs based on subjects' perceptual reports. Computational studies replicate statistical properties of percept durations with modeling principles like competitive attractors or Bayesian inference. However, bridging neuro-behavioral findings with modeling theory requires the analysis of single-trial dynamic data. Here, we propose an algorithm for extracting nonstationary timeseries features from single-trial electrocorticography (ECoG) data. We applied the proposed algorithm to 5-min ECoG recordings from human primary auditory cortex obtained during perceptual alternations in an auditory triplet streaming task (six subjects: four male, two female). We report two ensembles of emergent neuronal features in all trial blocks. One ensemble consists of periodic functions that encode a stereotypical response to the stimulus. The other comprises more transient features and encodes dynamics associated with bistable perception at multiple time scales: minutes (within-trial alternations), seconds (duration of individual percepts), and milliseconds (switches between percepts). Within the second ensemble, we identified a slowly drifting rhythm that correlates with the perceptual states and several oscillators with phase shifts near perceptual switches. Projections of single-trial ECoG data onto these features establish low-dimensional attractor-like geometric structures invariant across subjects and stimulus types. These findings provide supporting neural evidence for computational models with oscillatory-driven attractor-based principles. The feature extraction techniques described here generalize across recording modality and are appropriate when hypothesized low-dimensional dynamics characterize an underlying neural system.SIGNIFICANCE STATEMENTIrrespective of the sensory modality, neurophysiological studies of multistable perception have typically investigated events time-locked to the perceptual switching rather than the time course of the perceptual states per se. Here, we propose an algorithm that extracts neuronal features of bistable auditory perception from largescale single-trial data while remaining agnostic to the subject's perceptual reports. The algorithm captures the dynamics of perception at multiple timescales, minutes (within-trial alternations), seconds (durations of individual percepts), and milliseconds (timing of switches), and distinguishes attributes of neural encoding of the stimulus from those encoding the perceptual states. Finally, our analysis identifies a set of latent variables that exhibit alternating dynamics along a low-dimensional manifold, similar to trajectories in attractor-based models for perceptual bistability.

Funder

National Science Foundation

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3