Development of the alpha rhythm is linked to visual white matter pathways and visual detection performance

Author:

Caffarra Sendy,Kanopka Klint,Kruper John,Richie-Halford Adam,Roy Ethan,Rokem Ariel,Yeatman Jason D.

Abstract

Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its predominance in the EEG signal, large variations can be observed in alpha properties during development, with an increase of alpha frequency over childhood and adulthood. Here we tested the hypothesis that these changes of alpha rhythm are related to the maturation of visual white matter pathways. We capitalized on a large dMRI-EEG dataset (dMRI n=2,747, EEG n=2,561) of children and adolescents of either sex (age range: 5-21 years old) and showed that maturation of the optic radiation specifically accounts for developmental changes of alpha frequency. Behavioral analyses also confirmed that variations of alpha frequency are related to maturational changes in visual perception. The present findings demonstrate the close link between developmental variations in white matter tissue properties, electrophysiological responses, and behavior.Significance statementThe present work shows that the maturation of visual white matter pathways (optic radiations) specifically accounts for the developmental increase of brain oscillations frequency (alpha), which is ultimately related to an enhancement of visual perception during childhood and adolescence. The present findings are an example of how relating white matter properties to functional aspects of the brain can help us reach a more complete understanding of the link between development of brain connectivity, changes in electrophysiology, and visual perception.

Funder

EC | Horizon 2020 Framework Programme

Italian Ministry of University and Research

NSF/BSF BCS

HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

Jacobs Foundation Research Fellowship

HHS | NIH | National Institute of Mental Health

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3