Nonsynaptic Transmission Mediates Light Context-Dependent Odor Responses inDrosophila melanogaster

Author:

Ikeda Kazuaki,Kataoka Masaki,Tanaka Nobuaki K.ORCID

Abstract

Recent connectome analyses of the entire synaptic circuit in the nervous system have provided tremendous insights into how neural processing occurs through the synaptic relay of neural information. Conversely, the extent to which ephaptic transmission which does not depend on the synapses contributes to the relay of neural information, especially beyond a distance between adjacent neurons and to neural processing remains unclear. We show that ephaptic transmission mediated by extracellular potential changes in femaleDrosophila melanogastercan reach >200 µm, equivalent to the depth of its brain. Furthermore, ephaptic transmission driven by retinal photoreceptor cells mediates light-evoked firing rate increases in olfactory sensory neurons. These results indicate that ephaptic transmission contributes to sensory responses that can change momentarily in a context-dependent manner.SIGNIFICANCE STATEMENTAlthough extracellular field potential activities are commonly observed in many nervous systems, this activity has been generally considered as a side effect of synchronized spiking of neurons. This study, however, shows that field potential changes in retinae evoked by a sensory stimulus can control the excitability of distant neuronsin vivoand mediates multimodal sensory integration inDrosophila melanogaster. As such ephaptic transmission is more effective at a short distance, the ephaptic transmission from the retinae may contribute significantly to firing rate changes in downstream neurons of the photoreceptor cells in the optic lobe.

Funder

MEXT | JST | Precursory Research for Embryonic Science and Technology

MEXT | Japan Society for the Promotion of Science

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3