A Novel Layer 4 Corticofugal Cell Type/Projection Involved in Thalamo-Cortico-Striatal Sensory Processing

Author:

Bertero Alice,Verrillo Lucia,Apicella Alfonso junior

Abstract

In sensory cortices, the information flow has been thought to be processed vertically across cortical layers, with layer 4 being the major thalamo-recipient which relays thalamic signals to layer 2/3, which in turn transmits thalamic information to layer 5 and 6 to then leave the cortex to reach subcortical and cortical long-range structures. Although several exceptions to this model have been described, neurons in layer 4 are still considered to establish only local (i.e., interlaminar and short-range) connections. Here, taking advantage of anatomic, electrophysiological, and optogenetic techniques, we describe, for the first time, a long-range corticostriatal class of pyramidal neurons in layer 4 (CS-L4) of the mouse auditory cortex that receive direct thalamic inputs. The CS-L4 neurons are embedded in a feedforward inhibitory circuit involving local parvalbumin neurons and establish connections in the posterior striatum in yet another feedforward inhibitory thalamo→cortico(L4)→striatal circuit which potentially contributes in controlling control the output of striatal spiny projection neurons.SIGNIFICANCE STATEMENTThe assumption has been that layer 4 neurons are the main thalamic recipient layer, projecting to the upper cortical layer 2/3. However, no study has revealed a detailed understanding of the circuit mechanisms by which layer 4 sends a projection to a subcortical structure, such as the striatum, and differentially innervate the spiny projection neurons (SPNs) and intrastriatal parvalbumin-expressing neurons. For the first time, our results demonstrate that the auditory cortex projects to the posterior part of the dorsal striatum via pyramidal neurons located in layer 4 (CS-L4 neurons). Here we propose a new wiring diagram that implemented the old one, in which layer 4 is not only involved in the transfer of thalamic input to the upper layer 2/3, but can also exert a direct top-down control, bypassing intracortical processing of subcortical structures, such as the posterior part of the dorsal striatum. This poses a new conceptual cell element (CS-L4 neurons) for experimental and theoretical work of the cortical function.

Funder

HHS | NIH | National Institute of Mental Health

National Science Foundation

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3