Abstract
Working memory enables the temporary storage of relevant information in the service of behavior. Neuroimaging studies have suggested that sensory cortex is involved in maintaining contents in working memory. This raised the question of how sensory regions maintain memory representations during the exposure to distracting stimuli. Multivariate pattern analysis of fMRI signals in visual cortex has shown that the contents of visual working memory could be decoded concurrently with passively viewed distractors. The present fMRI study tested whether this finding extends to auditory working memory and to active distractor processing. We asked participants to memorize the pitch of a target sound and to compare it with a probe sound presented after a 13 s delay period. In separate conditions, we compared a blank delay phase (no distraction) with either passive listening to, or active processing of, an auditory distractor presented throughout the memory delay. Consistent with previous reports, pitch-specific memory information could be decoded in auditory cortex during the delay in trials without distraction. In contrast, decoding of target sounds in early auditory cortex dropped to chance level during both passive and active distraction. This was paralleled by memory performance decrements under distraction. Extending the analyses beyond sensory cortex yielded some evidence for memory content-specific activity in inferior frontal and superior parietal cortex during active distraction. In summary, while our findings question the involvement of early auditory cortex in the maintenance of distractor-resistant working memory contents, further research should elucidate the role of hierarchically higher regions.SIGNIFICANCE STATEMENTInformation about sensory features held in working memory can be read out from hemodynamic activity recorded in human sensory cortices. Moreover, visual cortex can in parallel store visual content and process newly incoming, task-irrelevant visual input. The present study investigated the role of auditory cortex for working memory maintenance under distraction. While memorized sound frequencies could be decoded in auditory cortex in the absence of distraction, auditory distraction during the delay phase impaired memory performance and prevented decoding of information stored in working memory. Apparently, early auditory cortex is not sufficient to represent working memory contents under distraction that impairs performance. However, exploratory analyses indicated that, under distraction, higher-order frontal and parietal regions might contribute to content-specific working memory storage.
Funder
Deutsche Forschungsgemeinschaft
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献