Visual Stimulation Induces Distinct Forms of Sensitization of On-Off Direction-Selective Ganglion Cell Responses in the Dorsal and Ventral Retina

Author:

Huang XiaolinORCID,Kim Alan Jaehyun,Acarón Ledesma Héctor,Ding JenniferORCID,Smith Robert G.,Wei WeiORCID

Abstract

Experience-dependent modulation of neuronal responses is a key attribute in sensory processing. In the mammalian retina, the On-Off direction-selective ganglion cell (DSGC) is well known for its robust direction selectivity. However, how the On-Off DSGC light responsiveness dynamically adjusts to the changing visual environment is underexplored. Here, we report that On-Off DSGCs tuned to posterior motion direction [i.e. posterior DSGCs (pDSGCs)] in mice of both sexes can be transiently sensitized by prior stimuli. Notably, distinct sensitization patterns are found in dorsal and ventral pDSGCs. Although responses of both dorsal and ventral pDSGCs to dark stimuli (Off responses) are sensitized, only dorsal cells show the sensitization of responses to bright stimuli (On responses). Visual stimulation to the dorsal retina potentiates a sustained excitatory input from Off bipolar cells, leading to tonic depolarization of pDSGCs. Such tonic depolarization propagates from the Off to the On dendritic arbor of the pDSGC to sensitize its On response. We also identified a previously overlooked feature of DSGC dendritic architecture that can support dendritic integration between On and Off dendritic layers bypassing the soma. By contrast, ventral pDSGCs lack a sensitized tonic depolarization and thus do not exhibit sensitization of their On responses. Our results highlight a topographic difference in Off bipolar cell inputs underlying divergent sensitization patterns of dorsal and ventral pDSGCs. Moreover, substantial crossovers between dendritic layers of On-Off DSGCs suggest an interactive dendritic algorithm for processing On and Off signals before they reach the soma.SIGNIFICANCE STATEMENTVisual neuronal responses are dynamically influenced by the prior visual experience. This form of plasticity reflects the efficient coding of the naturalistic environment by the visual system. We found that a class of retinal output neurons, On-Off direction-selective ganglion cells, transiently increase their responsiveness after visual stimulation. Cells located in dorsal and ventral retinas exhibit distinct sensitization patterns because of different adaptive properties of Off bipolar cell signaling. A previously overlooked dendritic morphologic feature of the On-Off direction-selective ganglion cell is implicated in the cross talk between On and Off pathways during sensitization. Together, these findings uncover a topographic difference in the adaptive encoding of upper and lower visual fields and the underlying neural mechanism in the dorsal and ventral retinas.

Funder

NIH

McKnight Endowment Fund for Neuroscience

NSF

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3